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Abstract. The purposes of this discussion paper are twofold. First, features of an objective

function landscape which provide barriers to rapid finding of the global optimum are de-
scribed. Second, stochastic algorithms are discussed and their performance examined, both
theoretically and computationally, as the features change. The paper lays a foundation for the

later findings paper.
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1. Introduction

This paper develops some background to the question ‘‘Given an objective
function f, what characteristics of an algorithm will efficiently find the glo-
bal minimum of f ?’’ In order to make some initial progress, this question
requires us to describe

� The class of objective functions to be considered.

� The class of algorithms to be considered.

� A method for determining algorithm efficiency.

This paper addresses the first and second points. The class of objective
functions should capture features which render a global optimization prob-
lem difficult. Intuition suggests that the number of local minima, the visi-
bility of local minima and global minima and the orderliness of local
minima will be key factors. These notions are discussed in Section 2. The
broader goal is to tailor a stochastic algorithm to the features of a land-
scape. To this end, associated stochastic algorithms are discussed in Section
3, and first steps made to matching them to landscapes, using both theory
and computation.
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2. Objective Function Features

In this section we introduce features of objective functions which appear to
be essential in establishing the difficulty of a global optimization problem.
These features are

1. The degree of modality, also at a higher level in a sense to be specified
(Section 2.1)

2. The size of the basins of attraction of local minima, again with an
extension at a higher level (Section 2.2)

3. The size of improving regions and, strictly related to this, the magni-
tude of oscillations (Section 2.3)

4. The degree of randomness in the positions of the minima (Section
2.4).

We will omit to discuss, but note it here, another obviously important fea-
ture, namely the dimension of the search space (the well-known curse of
dimensionality).
In order to raise the discussion above an abstract level these features will

be illustrated with computations in Section 3.1, using test functions taken
from the literature. These are the Rastrigin function

RastriginðxÞ ¼
Xn

i¼1
½x2i � k cosð2pxiÞ� þ nk; xi 2 ½�5:12; 5:12�;

where k is a positive parameter, and the Schwefel function

SchwefelðxÞ ¼
Xn

i¼1
�xi sinð

ffiffiffiffiffiffiffi
jxij

p
Þ; xi 2 ½�500; 500�:

We will also refer to the Lennard–Jones (LJ) function, which is derived
from mathematical models of the energy of cluster of atoms, but also rep-
resents a very challenging global optimization problem

LJðX1; . . . ;XNÞ ¼
1

2

X

i;j¼1;...;N; i 6¼j

1

jjXi � Xjjj12
� 2

jjXi � Xjjj6
; Xi 2 R3;

where N is the number of atoms and Xi represents the position of atom i.

2.1. MULTIMODALITY

A well known property on which the difficulty of a global optimization
problem depends is the degree of modality of the objective function f, that
is, the number of local minima of the function. The global minimum of a
unimodal function can be detected by a single run of a local search rou-
tine, whereas highly multimodal functions provide more challenging prob-
lems. Inside the class of highly multimodal functions it is possible to make
a further classification which depends not only on the number of local min-
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ima but also on a concept of modality at a ‘‘higher level’’. In order to
specify this concept some definitions are needed.
Given the global optimization problem minx2X fðxÞ, X � Rn and com-

pact, we consider a parameter a > 0 and introduce the oriented graph
Ga ¼ ðV;AaÞ, where each node v 2 V corresponds to a local minimum of f
over X (it is assumed that there are finitely many of them). Also

ðv1; v2Þ 2 Aa , fðv1ÞPfðv2Þ and v2 2 Sðv1; aÞ;
where

Sðv1; aÞ ¼ fx 2 X : jxi � vi1jOa; i ¼ 1; . . . ; ng ð1Þ
is the hypercube centred at v1 with edge length of 2a. This means that there
exists (at least) one arc between any two local minima which are close
enough to each other (where the definition of close depends on the choice
of the parameter a) and the direction of the arc depends on their relative
function values. The set

N aðvÞ ¼ fw 2 V : ðw; vÞ 2 Aa or ðv;wÞ 2 Aag
is the a-neighborhood of a local minimum v. Note that a more appropriate
choice would have been use of a different parameter ai for each direction
i ¼ 1; . . . ; n, in order to take into account the different behaviour of f with
respect to the different variables. For the sake of simplicity we restrict our
attention to the single parameter case. The set

DaðvÞ ¼ fw 2 V : ðv;wÞ 2 Aa and ðw; vÞ j2Aag � N aðvÞ
is the set of a-neighbours of v with a strictly lower function value. Now we
are ready for the definition of local minimum at a higher level.

DEFINITION 1. A point v� 2 X is an a-High Level Local Minimum (a-HLLM in
what follows) if it is a local minimum of f over X and if

Daðv�Þ ¼ ;:
Equivalently, an a-HLLM is a local minimum of f over the graph Ga.
Given a definition of local minimum at a higher level, we also need a local
search at a higher level, that is, an algorithm which is able to detect
a-HLLM. Such an algorithm is now presented.

ALGORITHM 1.
Step 1. Randomly choose a starting point v 2 V.

Step 2. If v is an a-HLLM, then stop. Otherwise go to Step 3.

Step 3. Explore N aðvÞ until a point v0 2 DaðvÞ is detected. Then set v ¼
v0 and go back to Step 2.

Of course, this is not a real algorithm for many reasons. First, it is necessary
to specify how to explore the a-neighborhood N aðvÞ. Second, the stopping
rule ‘‘stop when an a-HLLM has been detected’’ is an ideal one, since it
would be extremely hard to establish whether a point is an a-HLLM (it is
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even NP-hard to establish whether a given point is a local minimum, see [8]).
Finally, in a real algorithm it is more likely that a is not a fixed value but is
adaptively updated during the exploration in Step 3. For the purposes of
our analysis, however, this incomplete and unrealistic algorithm is what we
need.
We note that Algorithm 1 always returns an a-HLLM. We may there-

fore need to start different runs of this algorithm before detecting a global
minimum (note that global minima are always also a-HLLM, for any value
of a). For this reason it is desirable that the number of a-HLLM be as low
as possible. In the case of a single global minimum, the best situation
appears to be the one where a single a-HLLM (exactly the global mini-
mum) exists; in such a case a single run of Algorithm 1 immediately detects
the global minimum. But it is actually always possible to have a single
a-HLLM. Indeed, by choosing a sufficiently large value of a, the graph Ga

is complete and the unique a-HLLM is the global minimum.
A low number of a-HLLM is not the only desirable property, since we

should also take into account the cost of a run of the algorithm. If a very
large value of a is chosen, then a single run is needed but the exploration
of the a-neighborhoods N a becomes very expensive. In particular, when v
is close to the global minimum, the cardinality of the improving set DaðvÞ
is very small compared to that of N aðvÞ and a very large amount of time
can be spent in searching for a point in DaðvÞ. In order to make the explo-
ration of N aðvÞ more efficient we need small values of a.
We therefore have two (possibly) conflicting aims: keeping the number

of a-HLLM as low as possible (which may require large a values), and
keeping the exploration of the a-neighbourhoods N a as efficient as possi-
ble. Note that this is a typical issue in the definition of neighbourhoods in
combinatorial problems and our global optimization problem, once we
only consider local minima, actually reduces to a combinatorial one. It is
sometimes possible to choose values for a which satisfy both the aims. This
is the case, for instance, with the Rastrigin function, for which, even with
relatively small values of a, a unique a-HLLM exists in spite of the huge
number of local minima. On the other hand, it is not the case for the
Schwefel function, for which a single a-HLLM exists only with large values
of a, while smaller values of a produce a very large number of a-HLLM.
Functions like the Rastrigin one therefore appear to be easier to optimize
than the Schwefel, in spite of the fact that all of these functions have a
comparable number of local minima (if the same dimension n is chosen for
all). Of course, appropriate values of a are usually not known in advance,
but for the Rastrigin function such values exist and can possibly be
detected by some adaptive update scheme, while for the Schwefel function
such values do not even exist. Some computational results presented in
Section 3.1 will support the observations above.
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We can summarize the contents of this section by underlining that the
difficulty of a global optimization problem not only depends on the num-
ber of local minima but also on how they are placed in the search space:
highly multimodal problems where the number of a-HLLM is small even
for small a values can be considered as ‘‘easy’’ ones within the class of
highly multimodal problems.

2.2. SIZE OF BASINS OF ATTRACTION

In the previous Section we related the difficulty of a global optimization
problem to the number of local minima and, in particular, to the number
of local minima at a higher level. To be more precise, we should have men-
tioned that the difficulty is related to the size of the basin of attraction of
the global minimum (the global minimum is again assumed to be unique
for simplicity). Given a local search routine, the basin of attraction Aðx�Þ
of a local minimum x� is the set of points y 2 X starting from which the
local search routine finally returns x�. As a measure of the size of the basin
of attraction we can consider the probability that a uniformly chosen ran-
dom point in X belongs to Aðx�Þ. If a function f is highly multimodal, but
the size of the basin of attraction of the global minimum is very large com-
pared to the size of each of the basins of attraction of other local minima,
then the problem is not a difficult one (a local search started from a ran-
dom initial point is very likely to end up in the global minimum).
Now we can extend the definition of the size of the basin of attraction

to a-HLLM: given an a-HLLM v�, the size of its basin of attraction is the
probability that, by starting from a random initial point in V, Algorithm 1
will end up in v�. Again, if for small values of a (values for which the
exploration of the a-neighbourhoods is still efficient) the number of
a-HLLM is large but the size of the basin of attraction of the a-HLLM
corresponding to the global minimum is also very large, then the problem
is ‘‘easy’’ because only a single run of Algorithm 1 is very likely to be
needed.
For instance, the easier of the two functions in Figures 1 and 2 is the

one in Figure 1. They both have (for suitable choice of a) only two a-
HLLM (v�1 and v�2 in the figures) and even though it is not explicitly com-
puted, it is clear that the size of the basin of attraction of the a-HLLM
corresponding to the global minimum is larger for the function in Figure 1
than for the function in Figure 2.

2.3. IMPROVING REGIONS AND MAGNITUDE OF OSCILLATIONS

Algorithm 1 only moves from local minima to local minima by exploring
the a-neighbourhood N aðvÞ of a local minimum v until a better local mini-
mum, that is, a local minimum in DaðvÞ, is detected. It is possible to
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change it in such a way that at each iteration the a-neighbourhood N aðyÞ
of a general point in y 2 X (not necessarily a local minimum) is explored
until a better point z 2 DaðyÞ (again, not necessarily a local minimum) is
detected. (Note that the definitions of N a and Da can be easily extended to
general points.) In Algorithm 1, the efficiency of the exploration step is
related to the measure of DaðyÞ relative to N aðyÞ: if the measure of DaðyÞ
is very small compared to that of N aðyÞ, then we are very likely to spend a
long time before detecting a point in DaðyÞ (unless the problem has some
structure which enables us to favour the detection of improving points with
respect to worsening ones). Furthermore, the positions of the local minima
and the choice of a are the only features influencing the relative measure of
Da with respect to N a. When we consider the algorithm moving between
general points, however, we also have to take into account the behaviour
of the function in the regions around the local minima.
A common way to control this behaviour in test functions is by intro-

ducing a parameter which determines the magnitude of the oscillations of
the function. This is the case, for instance, with the parameter k appearing
in the Rastrigin function: as k increases, the magnitude of the oscillations

Figure 2. A function with two a-HLLM and a small basin of attraction of the global minimum v�2.

Figure 1. A function with two a-HLLM and a large basin of attraction of the global minimum v�1.
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of the function also increases and the regions of improvement shrink (see
Figures 3 and 4 for the cases k ¼ 2 and k ¼ 10). An analogous role is
played by the parameter l > 0 in the following class of functions
g : ½0;1Þ ! ½0;1Þ, given by

gðxÞ ¼ gtðxÞ for x 2 ½t� 1=2; tþ 1=2�; t 2 N; ð2Þ
where

gtðxÞ ¼
�2lxþ tð1þ 2lÞ x 2 ½t� 1=2; t�,
2ð1þ lÞx� tð1þ 2lÞ x 2 ½t; tþ 1=2�.

�

Here N denotes the natural numbers. It is easy to see that for a ¼ 1 the rel-
ative measure of DaðtÞ with respect to N aðtÞ is, for any t 2 N, equal to
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Figure 3. The Rastrigin function with k ¼ 2.
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Figure 4. The Rastrigin function with k ¼ 10.
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1=ð4ð1þ lÞÞ. Therefore, for small values of l (Figure 5) we have smaller
oscillations and larger regions of improvement than for large l values
(Figure 6).

Figure 5. Region of improvement for the point x (small oscillations).

Figure 6. Region of improvement for the point x (large oscillations).
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In view of the already remarked importance, for the efficiency of the
exploration step, of the relative measure of Da with respect to N a, increas-
ing the magnitude of oscillations (and, consequently, shrinking the regions
of improvement) has a strong (negative) impact on the algorithm moving
between general points. On the other hand, the impact is definitely less
strong for Algorithm 1. We would even expect Algorithm 1 to be unaf-
fected by a variation in the magnitude of oscillations because it only uses
the positions of the local minima, not what happens around them. While
this is true in theory, in practical implementations the magnitude of oscilla-
tions has some impact even on algorithms moving only between local min-
ima. This fact will be further discussed in Section 3.1.

2.4. DEGREE OF RANDOMNESS IN THE POSITIONS OF HIGH LEVEL

LOCAL MINIMA

A run of Algorithm 1 returns an a-HLLM. If the number of a-HLLM is
large or, more precisely, if the basin of attraction of the one corresponding
to the global minimum is very small, we can expect to have to run Algo-
rithm 1 many times before detecting the global minimum. We may wonder
whether the results of the different runs should simply be forgotten or
should be collected and combined in order to assist in the detection of new
minima. In some cases collecting and combining a-HLLM may lead to the
detection of the global minimum in a much faster way than by merely run-
ning Algorithm 1 many times until the global minimum is detected. This is
strictly related to the degree of randomness in the positions of a-HLLM.
Consider Figure 7 where the four a-HLLM (for some suitable choice of

a, say a ¼ 200) of the Schwefel function for n ¼ 2 are displayed (see Figure

Figure 7. Locations of four a-HLLM of the Schwefel function, for n ¼ 2.
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8 for the one-dimensional Schwefel function). It is immediately clear that
the a-HLLM are not randomly positioned. We can profit from this in
order to speed up the detection of the global minimum. For instance,
assume that Algorithm 1 has already returned the a-HLLM x�2 and x�3.
Then by combining them, for instance using the crossover operation of
genetic algorithms (taking one component from x�2 and the other one from
x�3), we can immediately detect the global minimum x�1. The regular pattern
followed by the a-HLLM of the Schwefel function is a consequence of the
separability of this function.
More generally, each time the positions of a-HLLM follow a regular pat-

tern, we may hope to increase efficiency in detecting the global minimum by
exploiting the information given by the set of already detected a-HLLM. Of
course, the regular pattern followed by the positions of a-HLLM is not usu-
ally known and, consequently, how to combine previously detected
a-HLLM is not immediately evident. If some regularity is present, however,
we may hope to detect and exploit it. This would not be possible if the posi-
tions of the a-HLLM were basically random as in Figure 9.

3. Results

We turn now to further development of algorithms and then examine how
they perform as objective function landscapes change.

3.1. THEORETICAL RESULTS

In this section we discuss how the features of objective functions intro-
duced so far affect algorithm performance, using some theoretical results.
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Figure 8. The one-dimensional Schwefel function.
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In order to do this we first propose a practical implementation of Algo-
rithm 1.

ALGORITHM 2.
Step 1. Generate a uniformly distributed point y 2 X and start a local

search from y. Let v be the detected local minimum.

Step 2. Generate a uniformly distributed point z 2 Sðv; aÞ (Sðv; aÞ is de-
fined in (1)) and start a local search from z. Let v0 be the
detected local minimum.

Step 3. If fðv0Þ < fðvÞ, then set v ¼ v0.

Step 4. If a stopping rule is satisfied, then stop. Otherwise go back to
Step 2.

Algorithm 2 is not an exact implementation of Algorithm 1. First of all,
since we do not usually have the opportunity of checking whether a point
is an a-HLLM, the stopping rule is generally ‘‘stop if, after a given number
of iterations, no improving point has been detected’’. Moreover, the local
minimum v0 generated in Step 2 does not necessarily belong to N aðvÞ. The
a-neighborhood explored in Step 2 is slightly different from N aðvÞ because
it contains any local minimum whose basin of attraction has a nonempty
intersection with Sðv; aÞ. In spite of these differences, Algorithm 2 can be
considered a reasonable approximation of Algorithm 1. We also underline
at this point that Algorithm 2 has not been introduced here merely for the
purposes of our analysis, but has been very succesfully applied for the min-
imization of Lennard–Jones clusters (see [2, 5, 6]). Moreover, the Variable
Neighbourhood Search algorithm, discussed for example in [3], is very

Figure 9. Locations of four irregularly positioned a-HLLM.
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similar to Algorithm 2, the only difference being that at each iteration
neighbourhoods of increasing size are explored, not just a single neighbour-
hood.
In Section 2.3 we discussed the possibility of exploring not only the local

minima in the a-neighbourhood of the current point but also of exploring
any point in this neighbourhood. We observed that such an algorithm is
very sensitive to the increase in the magnitude of oscillations (and, conse-
quently, the decrease of the size of the regions of improvement). This is
not the case for Algorithm 1, which ignores what happens in the region
around the local minima and only cares about the positions of the local
minima. In order to probe this further, we now present a practical imple-
mentation of an algorithm moving between general points and apply it and
Algorithm 2 to a simple example.

ALGORITHM 3.
Step 1. Generate a uniformly distributed point y 2 X and start a local

search from y. Let v be the detected local minimum.

Step 2. Generate a uniformly distributed point z 2 Sðv; aÞ.
Step 3. If fðzÞ < fðvÞ, then start a local search from z. Let v0 be the de-

tected local minimum and set v ¼ v0.

Step 4. If a stopping rule is satisfied, then stop. Otherwise go back to
Step 2.

Compared to the algorithm discussed in Section 2.3, a local search is now
started as a point in DaðvÞ is detected (see Step 3). This modification sim-
plifies the analysis (we only need to consider regions of improvement of
local minima) without affecting the conclusions.
Now let us consider Algorithms 2 and 3 with a ¼ 1 (again, as soon as a

is large enough, different values would not affect the conclusions) applied
to the following problem

min
x2½0;d�

gðxÞ d 2 N; ð3Þ

where g is the function defined in (2). Let the starting point at Step 1 be
y ¼ d for both algorithms. How long do we have to wait before detecting
the global minimum v� ¼ 0? We note that the probability of detecting a
better local minimum is equal to 1/4 for Algorithm 2 if we assume that the
basin of attraction of each local minimum v ¼ t, t 2 N, is the interval
½t� 1=2; tþ 1=2�. Note that this probability does not depend on l, the
parameter which controls the magnitude of oscillations. The probability of
detecting a better point in Algorithm 3 is equal to 1=ð4ð1þ lÞÞ, as already
disussed in Section 2.3. The expected number of iterations before detecting
the global minimum is therefore 4d for Algorithm 2 and 4ð1þ lÞd for
Algorithm 3. Of course, the cost of an iteration is larger for Algorithm 2
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than for Algorithm 3 because in the former a local search is always started
at each iteration.
These simple results clearly show what was already remarked in Section

2.3: Algorithm 2 is not influenced by parameter l, which controls the mag-
nitude of the oscillations, but this parameter does have a strong impact on
Algorithm 3. This suggests that local searches should be more often
employed when the function displays large oscillations. In some sense, local
searches allow us to remove the noise, i.e. the oscillations, which prevent
us from reaching the improving region even when we are already close to
it. It could be argued that the reason for the failure of Algorithm 3 for
large oscillations is that it accepts a new point only when it strictly
improves on the current one, whereas in some cases it may be profitable to
accept worsening points. This is what is done, for instance, in simulated
annealing algorithms.
Simulated annealing algorithms can be efficient when oscillations are not

too large, as in Figure 5, but are inefficient when there are large oscilla-
tions, as in Figure 6. Indeed, as observed in [9], at a fixed temperature T
the value of the density at a local minimum v in stationary conditions is
proportional to

exp � fðvÞ
T

� �
; ð4Þ

while the expected time to climb a barrier of height h which separates two
local minima is

exp
h

T

� �
: ð5Þ

It follows from (4) that in order to make the probability of being close to
a local minimum v1 much larger than the probability of being close to a
neighbouring local minimum v2, with fðv2Þ > fðv1Þ, we need a value of T
which is small compared to the difference fðv2Þ � fðv1Þ. It follows from (5),
however, that a value of T which is large with respect to h is needed in
order to keep the expected time needed to climb the hill low.
For function g the difference in the function values of two neighbouring

local minima is fixed and equal to one, but the height of the barrier
increases as l increases. For large values of l it becomes impossible to find
a temperature T which both strongly favours the better local minimum
and keeps the expected time needed to climb the barrier between them
small. In Figure 5 (corresponding to a small l value), for each local mini-
mum the barrier which has to be climbed in order to reach the neighbour-
ing local minimum with a better function value is small compared to the
one which has to be climbed in order to reach the neighbouring local mini-
mum with a worse function value. In Figure 6 (corresponding to a large l
value), however, the two barriers have almost the same height and it is not
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possible to find a temperature which makes it easy to climb the barrier
towards the better local minimum (which is also in the direction of the
global minimum) and difficult to climb the barrier towards the worse local
minimum (which is in the opposite direction of the global minimum).

3.2. COMPUTATIONAL RESULTS

We now turn to some practical numerical findings. The results in the previ-
ous section for Algorithm 2 have been obtained by assuming that the local
minimum returned by the local search is the one reached from the starting
point along a line of decreasing function values. So, for instance, if the
starting point is z ¼ tþ 1=4 the detected local minimum is v0 ¼ t. As a con-
sequence of this assumption the results of the algorithm applied to problem
(3) are not influenced by the value of l. It has already been briefly
remarked in Section 2.3, however, that real local search routines are some-
times more clever and able to jump over some local minima and end in
better ones. For instance, by starting again at z ¼ tþ 1=4 we may end up
with v0 ¼ t� 1 instead of t. The ability to jump over worse local minima
seems to be more evident when the magnitude of oscillations is not too
large, as we will now show by applying Algorithm 2 to some test func-
tions.
For the Rastrigin function, Algorithm 2 has been applied with

a ¼ 0:5

ffiffiffiffiffi
‘

10

r
; ð6Þ

where ‘ is the edge length of the hypercube X representing the feasible
region of the problem (‘ ¼ 10:24 for the Rastrigin function). The average
results (over 1000 random tests) for n ¼ 20 are reported in Table 1. (The
local search routine employed is a limited memory BFGS and the number
of gradient evaluations is the same as the number of function evaluations.)
These results show that, in spite of the fact that the number of local min-
ima is the same for k ¼ 2 and k ¼ 10 and that the minima are almost in
the same positions, the magnitude of oscillations does have some impact
on the performance of the algorithm. This is probably because with small
oscillations it is easier for the local search routine to jump over some local

Table 1. Average number of local searches and function evaluations needed to detect

the global optimum of the Rastrigin function with n ¼ 20; for k ¼ 2 and k ¼ 10

Local searches Function evaluations

2 97 1094

k

10 388 4680
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minima and end up in better ones, while this becomes more and more diffi-
cult as the magnitude of oscillations is increased.
For the Rastrigin function Algorithm 2, applied with large a values, dis-

plays very bad performance. For instance, it was not possible to detect the
global minimum of the Rastrigin function with k ¼ 2 even after 100,000
local searches. For such values there is a single a-HLLM but a strong inef-
ficiency introduced in the exploration of a-neighborhoods. On the other
hand, it has already been observed that these functions are such that a sin-
gle a-HLLM exists, even for smaller values of a, for which a-neighbor-
hoods can be explored efficiently. The results obtained for them with a
given by (6) are a practical confirmation of this observation. We emphasize
again that appropriate a values are generally not known in advance and
that usually some adaptive scheme must be incorporated in a real algo-
rithm in order to detect them.
We know from Section 2.1 that appropriate a values do not exist for all

functions, that is, values for which both the number of a-HLLM is small
and the exploration of a-neighborhoods can be done in an efficient way. In
particular, in that section we mentioned the case of the Schwefel function.
For large values of a a single a-HLLM exists, but if we decrease the value
of a the number of a-HLLM immediately increases to 2n (see Figure 7 for
the case n ¼ 2). The greater difficulty presented by this function compared
to the Rastrigin one is computationally confirmed by the fact that for
n ¼ 20 not even 1000 runs of Algorithm 2 with different a values were able
to return the global minimum.
In Section 2.4 we noticed that although in some cases the number of a-

HLLM is very large it may be the case that they are positioned according
to some regular pattern. In such cases it may be possible to increase the
efficiency of Algorithm 2 by incorporating a step which collects and com-
bines the results of multiple runs of Algorithm 2. The structure of the
resulting algorithm is now presented.

ALGORITHM 4.
Step 1. Set C ¼ ;.
Step 2. Run Algorithm 2 and let v be the returned point.

Step 3. Set C ¼ C [ fvg. Combine in some way (to be specified) the points
in C and return a new set of points A. If the stopping rule is sat-
isfied, then stop. Otherwise go back to Step 2.

Discussion of how to combine points in C in order to get a new set of
points A goes beyond the scope of this paper, but, for instance, the cross-
over operations of genetic algorithms are one possibility. Indeed, the
Schwefel function has been defined as ‘‘the genetic algorithm playground’’.
Excellent computational results are reported in [7], although it should be
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pointed out that these results have been obtained by modifying very few
variables of current solutions at each iteration (and not all of them as in
Step 2 of Algorithm 2), thus explicitly exploiting the separability of the
objective function. While the regular pattern of the a-HLLM is obvious for
the Schwefel function, in some other cases it is not known whether such a
regular pattern exists. For instance, the a-HLLM of the Lennard-Jones
functions may follow some regular pattern (the successful application of
genetic algorithms to these problems suggests that, see for example [1, 4])
but gaining insight about these patterns appears not a trivial task.
Finally, we notice that while there does not seem to exist in the literature

a unique class of test functions in which all the features described in the
previous sections are incorporated, most do appear across standard test
functions. For instance, parameter k in the Rastrigin function controls the
magnitude of the oscillations, and the Rastrigin function is an example of
a function for which a single a-HLLM can be obtained even for small a-
values. On the other hand, the Schwefel function is an example where this
is not possible. What seems to be lacking in the test function literature is a
parameter which controls the size of basins of attraction of different
a-HLLM. What would be needed is a parameter which produces both the
landscape in Figure 1 (with a large basin of attraction for the a-HLLM
corresponding to the global minimum) and the landscape in Figure 4 (with
a small basin of attraction for the a-HLLM corresponding to the global
minimum). A partial answer is provided by Lennard–Jones functions.
Although they do not contain a parameter which explicitly controls the size
of the basins of attraction, they provide a wide range of cases as N, the
number of atoms, varies. The range goes from easy cases (for example,
N ¼ 13) where a single a-HLLM exists, to very hard cases (for example,
N ¼ 38,75–77,98,102–104) where the basin of attraction of the a-HLLM
corresponding to the global minimum is very narrow (see for example the
discussion on multiple-funnel energy landscapes in [2]).

4. Conclusion

Four features of objective functions which strongly influence the ease of
global optimization have been isolated, as follows. The first and second
involve the concept of a high level local minima (Section 2.1).

1. The existence of a local search parameter a which gives rise to both
cheap neighbourhood exploration (favoured by small a) and a small
number of a-HLLM (favoured by large a). (If a compromise exists,
the problem is easier.)

2. The size of the basin of attraction of the a-HLLM corresponding to
the global minimum. (The larger the basin, the easier is the problem.)
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3. The amplitude of oscillations. (The higher the amplitude, the greater
the need for local search.)

4. Pattern in the locations of the local minima. (The more apparent the
pattern, the easier is the problem.)

Some algorithms have been described and the influence of these features
on their performance discussed.
To conclude, the problem raised and partially discussed has been ‘‘Given

a particular objective function, how should the parameters of a stochastic
algorithm be chosen to ensure that it converges as efficiently as possible?’’
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